
International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 15
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Determinism Modeling of PVM’s
Non Deterministic Actions

Sampath S, Bharat Bhushan Sagar

Abstract— Parallel computing operates on the principle that large problems can often be divided into smaller ones, which are then solved
concurrently to save time by taking advantage of non-local resources and overcoming memory constraints. Parallel computing environment is
realized using cluster based parallel computing architecture based system. MPI and PVM are the major tools used for establishing parallel
computing environment. The performance of parallel application mainly depends on the methodology used for assignment of tasks. MPI follows
the deterministic nature for assigning the tasks whereas the PVM follows the non deterministic nature which makes the PVM performance slower
than that of MPI. In our work, we analyze the deterministic nature of MPI and non deterministic nature of PVM. This is realized by implementing
matrix multiplication using both MPI and PVM. The computation is performed for different sizes of matrices over the different number of nodes.
The results are compared with the computation time obtained for executions with MPI and PVM. Our work also focuses on the analysis of
performance variations when the non deterministic nature for assignment of tasks of PVM is made deterministic forcibly.

Keywords—Parallel Execution, Cluster Computing, MPI (Message Passing Interface), PVM (Parallel Virtual Machine).

—————————— ——————————

1 INTRODUCTION

Parallel processing refers to the concept of speeding up the
execution of a program by dividing the program into multiple
fragments that can execute simultaneously, each on its own
processor. MPI and PVM are the major parallel
programming tools.

Message Passing Interface (MPI)
MPI (Message Passing Interface) is specification for message-
passing libraries that can be used for writing portable parallel
programs. In MPI programming, a fixed set of processes is
created at program initialization. Each process knows its
personal number. Each process knows number of all processes
and they can communicate with other processes. Process
cannot create new processes and the group of processes is
static.
MPI provides an interface for the basic user, yet is powerful
enough to allow programmers to use the high performance
message passing operations available on advanced machine.
When a MPI-program is executed on a master process, the
function MPI_Init() initializes the execution environment. It
opens a local socket and binds it toa port and verifies that
communication can be established with other processes. Then,
it distributes MPI internal state to each task so that they start
execution. Each task will execute its own portion of code and
when it finishes, it will call MPI_Finalize() which closes the
communication library and terminates the service. Both
MPI_Init() and MPI_Finalize() must be executed by each task.
MPI has several kinds of send and receive functions to
facilitate many applications requirements. There are many
versions of MPI, these are detailed in the Appendix part. In our

project, we are using MPICH2 for providing parallel
environment using MPI [20].

Parallel virtual machine (PVM)
PVM (Parallel Virtual Machine) is a software package that
allows a heterogeneous collection of workstations (host pool) to
function as a single high performance parallel virtual machine.
The PVM system consists of the daemon (or pvmd), the
console process and the interface library routines. One daemon
process resides on each constituent machine of the virtual
machine. Daemons are started when the user starts PVM by
specifying a host file, or by adding hosts using the PVM
console. The PVM console is the interface for users to interact
with the PVM environment. The console can be started on any
machine of the virtual machine. Using the console, a user can
monitor the status of the PVM environment or reconfigure it.
The final component, the PVM interface library, has routine for
message-passing, spawning of application processes and
coordination of these processes.
The daemons in PVM play a pivotal role. Besides being
responsible for spawning new processes and fault-detection, a
daemon is also the message router. All communication between
applications processes will normally be brokered by the
daemons since by default, each application process can only
communicate directly with the local daemon. Each daemon
maintains information concerning the location and status of all
application processes in the virtual machine. When a message
for a route process is received from a local application process,
the local daemon determines the physical location of that
remote process and forwards the message to the remote
daemon. Both UDP and TCP sockets are used in PVM. There
are many versions of PVM; these are detailed in the Appendix
part. In our project, we are using PVM3.4.6 for providing
parallel environment using MPI [20].

Deterministic communicator
 In MPI, communicator is an ordered set of nodes. Each node in
the communicator has a rank and ranks are strictly defined and

————————————————
• Sampath S, B.E, M.Tech is a Research Scholar in

Department of CS & E, Shri Venkateshwara
University, Gajraula, Uttarpradesh, INDIA

• Bharat Bhushan Sagar Ph.D working as an Assistant
Professor in Department of CS & E, Birla Institute of
Technology, Noida, Uttarpradesh, INDIA

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 16
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

not exchanged. Where as in PVM there is no ordering, the
order may change dynamically.

2 RELATED WORKS

Traditionally, multiple processors were provided within a
specially designed "parallel computer"; along these lines,
Linux now supports SMP Pentium systems in which multiple
processors share a single memory and bus interface within a
single computer. It is also possible for a group of computers
(for example, a group of PCs each running Linux) to be
interconnected by a network to form a parallel-processing
cluster.

V.S Sunderam, G.A Geist, J Dongarra, R Manchek (1994)
[5] describe the architecture of PVM system, and discuss its
computing model, the programming interface it supports,
auxiliary facilities for process groups and MPP support, and
some of the internal implementation techniques employed.
Hai Jin, Rajkumar Buyya, Mark Baker (2001) [13] discussed
the incentive for using clusters as well as the technologies
available for building clusters. and also discussed a number of
Linux-based tools such as MPI, PVM etc. and utilities for
building clusters.

Amit Chhabra, Gurvinder Singh (2010) [1] proposed
Cluster based parallel computing framework which is based
on the Master-Slave computing paradigm and it emulates the
parallel computing environment. Kamalrulnlzam Abu Bakar,
Zaitul Mlirlizawati Zalnuddln (2006) [4] made the
performance comparison of PVM and RPC. The comparison
is done by evaluating their performances through two
experiments namely one is a broadcast operation and the other
are two benchmark applications, which employ prime number
calculation and matrix multiplication. Sampath S, Sudeepa,
Nanjesh B.R (2012) [3] presented the framework that
demonstrates the performance gain and losses achieved
through parallel/distributed processing and made the
performance analysis and evaluation of parallel applications
using this cluster based parallel computing framework. Dorta,
Leon, Rodiguez (2003) [11] presented the comparison
between MPI and OpenMP. They clearly described and
compared two parallel implementations of branch-and-bound
skeletons using the C++ programming language.
Rajkumar Sharma, Priyesh Kanungo, Manohar Chandwani
(2011) [12] evaluated performance of parallel applications
using MPI on cluster of nodes having different computing
powers in terms of hardware attributes/parameters. Rafiqul
Zaman Khan and Md Firoj Ali (2011) [2] represented the
comparative study of MPI and PVM parallel programming
tools in parallel distributed computing system they described
some of the features for parallel distributed computing system
with a particular focus on PVM and MPI which are mostly
used in today’s parallel and distributed computing system.
Diego Mostaccio, Christianne Dalforno, Remo Suppi and
Emilio Luque (2006) [9] carried out the distributed simulation
for high performance models into a very useful and low-cost
tool. The two distributed simulator have been developed based
on PVM and MPI communication libraries. This work
resumed the advantages and drawbacks of each
implementation and some conclusions about the distributed
simulation for this type of models are extracted. Cirtek P,
Racek S (2007) [10] made the performance comparison of
distributed simulation using PVM and MPI in which presented
the possibilities of the simulation programs speedup using

parallel processing and compared the results from an example
experiments. In this work their application to an individual
oriented model is analyzed. Our work also focuses on the
analysis of performance variations when the non deterministic
nature for assignment of tasks of PVM is made deterministic
forcibly.

3 SYSTEM REQUIREMENT

A. Hardware Requirements
• Processor: Pentium D (3 G Hz)
• Two RAM: 256MB and 1GB
• Hard Disk Free Space: 5 GB
• Network : TCP/IP LAN using switches or hubs

B. Software Requirements
• Operating System: Linux
• Version: Fedora Core 14
• Compiler: GCC
• Communication protocol: MPI and PVM
• Network protocol: Secure Shell

4 SYSTEM DESIGN

To make our analysis, we need to design cluster based parallel
computing architecture, matrix multiplication common for both
MPI and PVM

Cluster based parallel computing architecture
Cluster based parallel computing architecture involving three
nodes over which MPI and PVM based parallel applications
can run. Desktop PC’s are termed here as nodes which are
connected together using Ethernet TCP/IP LAN to work as
single high performance computing system. Each node contains
two cores.

Fig1: Cluster based parallel computing architecture
Simple Matrix multiplication design

Using the capacity of underlying nodes, the processes perform
the parallel computation. One of the processes acts as master
and remaining processes acts as slaves. For each process unique
task ids or number will be generated for identifying processes
in the communication world. Message tags and offset are used
for the proper arrangement of solutions by a master.
Matrix multiplication design

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 17
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig2: Parallel matrix multiplication

5. IMPLEMENTATION

While spawning the new processes in PVM, it is forcibly made
to act on particular nodes only

pvm_spawn - Starts new PVM processes

pvm_spawn(char *task, char **argv, int flag, char *where,
 int ntask, int *tids).

1)*task is the executable slave file name.
2) argv Pointer to an array of arguments to the executable
3) flag: Spawning operation and it can be
PvmTaskDefault 0
PVM can choose any machine to start task
PvmTaskHost
1 where specifies a particular host
PvmTaskArch
2 where specifies a type of architecture PvmTaskDebug 4 Start
up processes under debugger PvmTaskTrace 8 Processes will
generate PVM trace data.
4) where string specifies where to start the PVM process. That
is host name.
5)ntask specifies the number of copies of the slaves to be
started
6)tids unique identification for the tasks spawnwd.
 Below code shows the general non deterministic approach of
assigning tasks.

for (i=0; i<NPROC; i++)
 {

 pvm_spawn("nslave", NULL, PvmTaskDefault, "", 1,
&wtids[i]);
}

Where NPROC is the number of slaves specified by the user,
Here PvmTaskDefault is specified which means pvm can start
at any host. Instead of this we can make deterministic so that
particular processes should run over the specified host only as
in MPI.
Since MPI gives complete deterministic utilization of all the 6
cores(3 nodes) with 6 processes, we assume that number of
slaves as 5 with one master

Considered three hosts: host1, host2, host3.
The code can be modified as below.
for (i=0; i<NPROC; i++)
 {
if(i==0)
 pvm_spawn("nslave", NULL, PvmTaskHost,

"host1", 1, &wtids[i]);
else if(i==1||i==3)
 pvm_spawn("nslave", NULL, PvmTaskHost,

"host2", 1, &wtids[i]);
else

pvm_spawn("nslave", NULL, PvmTaskHost,
"host3", 1, &wtids[i]);

}
Master and first slave are allowed to act over host1, second and
third slaves are allowed to act over host2, fourth and fifth slave
are allowed to act over host3. That is PVM is made forcible
deterministic. It can be shown as below:

Fig 3. Determinism Modeling of PVM

6 Results and Discussion

Table 1: Performance of parallel execution for smaller order matrices

(At 1GB RAM, all time in seconds)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 18
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

0.2
0.42

0.77

1.25

1.82

0.42

0.68

0.98

2.23

3.16

0

0.5

1

1.5

2

2.5

3

3.5

250*250 350*350 450*450 550*550 650*650

MPI

Non Deterministic
PVM

Deterministic PVM

Fig 4: Comparison of MPI and PVM Non deterministic and PVM deterministic performance for smaller matrices over three nodes.

Table 2: Performance of parallel execution for larger order matrices
(At 1GB RAM, all time in seconds)

Matrix size

Execution type

250 × 250 350 × 350 450 × 450 550 × 550 650 × 650

Parallel on three

Nodes with MPI

0.201018

0.420166

0.775246

1.254682

1.820354

Parallel on three

Nodes with Non Deterministic PVM

0.428131

0.683427

0.985176

2.234166

3.164312

Parallel on three

Nodes with Forcibly Deterministic PVM

0.381243 0.597642 0.812437 1.986542 2.901764

 Size of matrix

Time in

 seconds

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 19
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

5.28 14.91

31.25

56.81

97.62

7.66

19.12

36.28

66.95

108.25

6.128

16.653

34.293

61.51

102.45

0

20

40

60

80

100

120

MPI

PVM Non
Deterministic

PVM Forcibly
Deterministic

Fig 5: Comparison of MPI and PVM Non deterministic and PVM deterministicperformance for larger matrices over three nodes

7 RESULTS AND CONCLUSION
We have analyzed the performance of parallel execution with
MPI, non deterministic PVM and forcibly deterministic PVM.
The results are tabulated and analyzed. It shows that forcibly
deterministic PVM shows higher performance than non
deterministic PVM. However MPI is faster than both the types
of PVM. The performance of forcibly deterministic PVM lies
between non deterministic PVM and MPI.
8 FUTURE WORKS
The analysis made by fixing only three nodes where the
processes are fixed to 6 processes including one master and
five slaves, in future it can be extended to more number of

nodes with different number of processes.

REFERENCES
[1] AmitChhabra, Gurvinder Singh "A Cluster Based Parallel

Computing Framework (CBPCF) for Performance Evaluation of
Parallel Applications", International Journal of Computer Theory
and Engineering, Vol. 2, No. 2 April, 2010.

[2] RafiqulZaman Khan, MdFiroj Ali, “A Comparative Study on
Parallel Programming Tools in Parallel Distributed Computing
System: MPI and PVM”, Proceedings of the 5th National
Conference; INDIACom-2011.

[3] Sampath S, Sudeepa K.B, Nanjesh B R “Performance Analysis
and Evaluation of Parallel Applications using a CBPCF”,
International Journal of Computer Science and Information
Technology Research Excellence (IJCSITRE), Vol.2,Issue 1,Jan-

Matrix size

Execution type

1000 × 1000 1500 × 1500 2000 × 2000 2500 × 2500 3000 × 3000

Parallel on three

Nodes with MPI

5.281018

14.912146

31.251527

56.816513

97.621531

Parallel on three

Nodes with Non
Deterministic PVM

7.664543

19.127211

36.281561

66.958763

108.257814

Parallel on three

Nodes with Forcibly
Deterministic PVM

6.128321 16.653723 34.293425 61.564372 102.453627

Time in

 seconds

 Size of matrix IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 20
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Feb 2012.
[4] Kamalrulnlzam Abu Bakar, ZaitulMlirlizawatiZalnuddln, “Parallel

Virtual Machine versus Remote Procedure Calls: A Performance
Comparison”, JilidIS.Bit. I, JumalTeknologiMaklumat, June 2006.

[5] V.S Sunderam, G.A Geist, J Dongarra, R Manchek, “PVM
Concurrent Computing System Evolution, Experiences and
Trends”, Parallel Computing - Special issue: message passing
interfaces archive Volume 20 Issue 4 Pages 531-545, April 1994.

[6] MPI Standard: http://www.mpi-form.org.
[7] History of PVM versions:

http://www.netlib.org/pvm3/book/node156.html.
[8] PVM3.4.6: http://www.csm.ornl.gov/pvm/pvm3.4.6.
[9] Diego Mostaccio, Christianne Dalforno, Remo Suppi 1 and Emilio

Luque , ”Distributed Simulation of Large-Scale Individual
Oriented Models”, JCS&T Vol. 6 No. 2 October 2006.

[10] Cirtek P, Racek S, “Performance Comparison of Distributed
Simulation using PVM and MPI”, The International Conference on
"Computer as a Tool". Page(s): 2238 – 2241, EUROCON, 2007.

[11] Dorta, Leon, Rodiguez “A comparison between MPI and OpenMP
branch-and-bound skeletons”, Parallel and Distributed Processing
Symposium 2003 International Proceedings, April 2003.

[12] Rajkumar Sharma, Priyesh Kanungo, Manohar Chandwani,
“Performance Evaluation of Parallel Applications using Message
Passing Interface in Ntework of Workstations of Different
Computing Powers”, Indian Journal of Computer Science and
Engineering(IJCSE), Vol. 2,No. 2, April-May 2011.

[13] Hai Jin, Rajkumar Buyya, Mark Baker, “Cluster Computing Tools,
Applications, and Australian Initiatives for Low Cost
Supercomputing”, MONITOR Magazine, The Institution of
Engineers Australia , Volume 25, No 4, Dec.2000-Feb 2001.

[14] MPICH2: A New Start for MPI Implementations, Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, Lecture Notes in Computer Science, Volume 2474,
2002, p 7.

IJSER

http://www.ijser.org/
http://www.mpi-form.org/
http://www.netlib.org/pvm3/book/node156.html
http://www.csm.ornl.gov/pvm/pvm3.4.6

